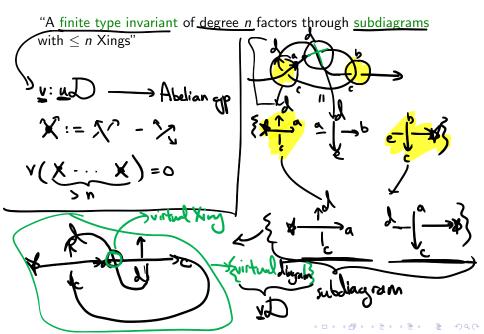
The Goussarov-Polyak-Viro (GPV) Theorem

July 21, 2021

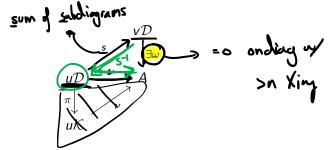
"Statement of the theorem"



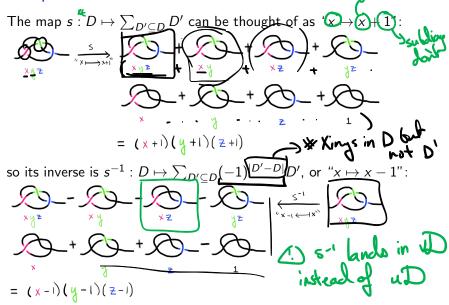
Statement of the theorem

Theorem (Goussarov, Polyak, Viro): Given a finite type invariant $\nu: u\mathcal{D} \to A$ of degree n, there exists $\omega: v\mathcal{D} \to A$ such that:

- 1. $\omega \circ s = \nu$ (the following diagram commutes)
- 2. $\omega = 0$ on diagrams with > n (real or double point) Xings.



The map s and its inverse

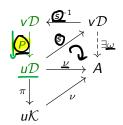


The map P: properties

We want a map $P: v\mathcal{D} \to u\mathcal{D}$ which satisfies:

1. $\nu \circ P = \nu$ on real knot diagrams (computed)

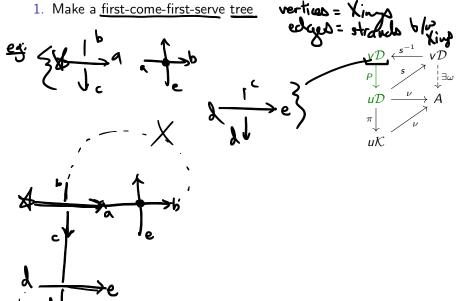
(2) $\nu \circ P \circ s^{-1} = 0$ on diagrams with > n (real or singular) Xings



Then we can define

$$\omega = \nu \circ P \circ s^{-1}$$

1. Make a <u>first-come-first-serve tree</u>



1. Make a first-come-first-serve tree

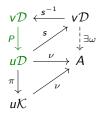
2. Change all bad Xings to good Xings (using the double point relation)

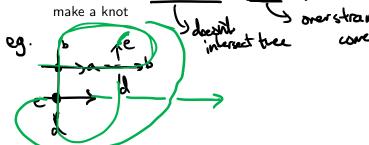
1. Make a <u>first-come-first-serve</u> tree

2. Change all bad Xings to good Xings (using the double point relation) 3. Sweep the first real crossing on the double point tree_

- 1. Make a first-come-first-serve tree
- Change all bad Xings to good Xings (using the double point relation)
- 3. Sweep the first real crossing on the double point tree
- Repeat steps 1, 2 and 3 until... Lerms:

- 1. Make a first-come-first-serve tree
- 2. Change all bad Xings to good Xings (using the double point relation)
- 3. Sweep the first real crossing on the double point tree
 - 4. Repeat steps 1, 2 and 3 until...
 - 5. Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to





The map P:

To show that P works, we must show:

 $\sqrt{1}$. $\nu \circ \underline{P} = \underline{\nu}$ on real knot diagrams

2. $\nu \circ P \circ s^{-1} = 0$ on > n Xings

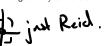
Make a first-come-first-serve tree

 Change all bad Xings to good Xings (using the double point relation)

. Sweep the first real crossing on the double point tree

Repeat steps 1, 2 and 3 until...

 Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to make a knot



To show that P works, we must show:

- 1. $\nu \circ P = \nu$ on real knot diagrams
- 2. $\nu \circ P \circ s^{-1} = 0$ on > n Xings

| 1194 show (15 1100 sm grading) | diverse | S-1 (your) | S-1 (x) = "X" | S-1

The map P:

$$\begin{array}{ccc}
\mathcal{D} & \stackrel{s-1}{\longleftarrow} v\mathcal{D} \\
\downarrow & \stackrel{s}{\longrightarrow} & \downarrow \exists \omega \\
\mathcal{D} & \stackrel{\nu}{\longrightarrow} & A
\end{array}$$

- Make a first-come-first-serve tree
- Change all bad Xings to good Xings (using the double point relation)
- Sweep the first real crossing on the double point tree
- ✓ Repeat steps 1, 2 and 3 until...
- Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to make a knot

To show that P works, we must show:

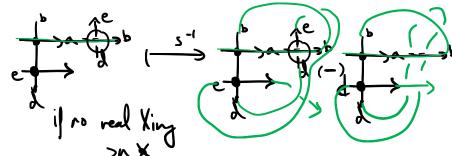
- 1. $\nu \circ P = \nu$ on real knot diagrams
- 2. $\nu \circ P \circ s^{-1} = 0$ on > n Xings

why is = o on good diag?

The map P:

- 1. Make a first-come-first-serve tree
- Change all bad Xings to good Xings (using the double point relation)
- Sweep the first real crossing on the double point tree
- 4. Repeat steps 1, 2 and 3 until...

Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to make a knot

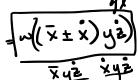


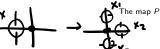
To show that P works, we must show:

- 1. $\nu \circ P = \nu$ on real knot diagrams
- 2. $\nu \circ P \circ s^{-1} = 0$ on > n Xings

The map P:

- 1. Make a first-come-first-serve tree
- Change all <u>bad</u> Xings to good Xings (using the double point relation)
- Sweep the first real crossing on the double point tree
- 4. Repeat steps 1, 2 and 3 until...
- Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to make a knot





To show that P works, we must show:

- 1. $\nu \circ P = \nu$ on real knot diagrams
- 2. $\nu \circ P \circ s^{-1} = 0$ on > n Xings

Make a first-come-first-serve tree

Change all bad Xings to good Xings (using the double point relation)

- Sweep the first real crossing on the double point tree
- Repeat steps 1, 2 and 3 until...
- Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to make a knot

5. Set to 0 if > n double points, otherwise, connect strands off the tree in a good way to make a knot

$$= w(x+1)yz - w(yz)$$

$$= vP(x(y-1)z)$$

$$= vP(x_1x_2x_3(y-1)z) = vPs^{-1}((x_1+1)(x_2+1)(x_3+1)(y_3+1)($$

So we are done! But...

Confusions

- ls it necessary to repeat step 1?
 - ► How important is a first-come-first-serve tree? Can we build other trees?
 - ▶ How can we change the ordering of the issues?
 - ▶ Is there a more "direct" description of ω ?

